PHYSICAL REVIEW E 76, 066308 (2007)
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We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic
(MHD) Taylor-Couette flow at the finite aspect ratio H/D=10. The fluid confined between the cylinders is
assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly
conducting, an axial magnetic field is imposed with Hartmann number Ha= 10, and the rotation rates corre-
spond to Reynolds numbers of order 10>°—~103. We show that the end plates introduce, besides the well-known
Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by
any walls. In particular, there exists the Hartmann current, which penetrates the fluid, turns in the radial
direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be
compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such
flows and show that the currents induced by the plates can give rise to instability for the considered parameters.
When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical mag-

netic boundaries so that they do not significantly alter the rotational profile.
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INTRODUCTION

Motion of a fluid confined between two concentric, rotat-
ing cylinders is a classical problem in hydrodynamics and, if
the fluid is conducting and an external magnetic field is ap-
plied, magnetohydrodynamics (MHD). Flow of this type,
usually referred to as Taylor-Couette flow, was first studied
by Couette [1] and later was the subject of a seminal work by
Taylor [2], who experimentally confirmed the theoretical re-
sults of a linear stability analysis. In the field of MHD, im-
portant work was done by Velikhov [3] who showed that for
a conducting fluid a weak magnetic field can play a destabi-
lizing role and can lead to an instability which today is called
the magnetorotational instability (MRI) [4].

When studying the Taylor-Couette system it is common to
assume some simplifications, the small-gap approximation or
large aspect ratio. In the former it is assumed that the gap
between the cylinders D=R,—R;, is small compared to the
radii, i.e., D/R, ;< 1; this allows the neglect of terms of
order 1/R, R being the distance from the center of rotation.
When considering a large aspect ratio, one assumes that the
height of the cylinders H is much larger than the gap width
I'=H/D> 1, which guarantees that a secondary flow due to
the plates bounding the cylinders is insignificant and does
not disturb the rotational profile of the fluid.

On the other hand, there is also plenty of work done for
small aspect ratio I' = 1, where the rigidly rotating end plates
play a crucial role and simply introduce a new class of prob-
lems. When I" becomes an important parameter, it is possible
to observe a wide family of different states (including non-
axisymmetric ones or peculiar asymmetric patterns—
anomalous modes) for the same parameters, so that the ob-
served results depend on their path through the parameter
space from an initial state. Therefore this system is an excel-
lent subject for bifurcation theory [5-10].
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In the present work, we focus on the case of a wide gap
Ri,/Ry=1/2 and I'=10, which is an intermediate aspect ra-
tio, between very short and long containers, yet in a purely
hydrodynamical context the influence of the vertical bound-
aries is small, at least for Reynolds numbers of order
0(102-10%). However, if the rotation rates are large enough,
so that the corresponding Reynolds number is O(10°) and
larger, the plates can easily dominate the flow in the entire
container. This is due to the Taylor-Proudman theorem, from
which it follows that in rapidly rotating systems the flow
tends to align itself along the axis of rotation. For such rota-
tions, it is necessary that I would have to be several thou-
sand in order to obtain a rotational profile which is not pro-
foundly altered by the end plates [11].

The results of a recent MRI experiment Potsdam-
Rossendorf magnetic instability experiment (PROMISE)
[12-14] as well as nonlinear simulations [15,16] indicate
that, for a flow with relatively small Reynolds number ~103,
and parameters resembling essentially MHD stable flow in
the limit of infinitely long cylinders, there exist unexpected
time-dependent fluctuations of the velocity field. These dis-
turbances arise as an effect of the vertical boundary condi-
tions; moreover, the simulations show that they are much
stronger if the end plates bounding the cylinders are assumed
to be perfectly conducting.

The plates induce a well-known hydrodynamical effect—
the Ekman circulation, which is a result of unbalanced pres-
sure gradients in the vicinity of the vertical no-slip boundary
conditions. There the Ekman layer develops, in which the
fluid velocity from the bulk of the container must match the
velocity imposed by the end plates.

It seems that for MHD Taylor-Couette flow, magnetic ef-
fects, unlike the classical hydrodynamical Ekman layer, in-
duced by the plates have been overlooked. In this paper, we
argue that the rigidly rotating plates together with an im-
posed axial magnetic field give rise to a similar layer, which
develops for an infinite, rotating plate serving as a boundary
for the conducting fluid. One of the most important features
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of such flow is the existence of the Hartmann current (absent
in the conventional Hartmann problem [17]), which leaves
the boundary layer and then interacts with the magnetic field.
In particular, this becomes important for conducting plates,
which was the case for the PROMISE experiment, since one
of the end plates was made from copper.

We discuss properties of Ekman-Hartmann layers for in-
finite, rotating plates and relate it to the end plates enclosing
the cylinders in a Taylor-Couette setup. It is shown that, for
the considered radial boundary conditions, the induced cur-
rent turns eventually in the radial direction and, acting in
concert with the imposed axial magnetic field, gives rise to a
body force.

We demonstrate that magnetic effects induced by the end
plates enclosing the cylinders can profoundly alter flow
properties. In particular, the rotational profile can become
significantly different from the expected parabolic Couette
solution. Moreover, if the Hartmann current is strong
enough, it is likely that the local Rayleigh criterion for sta-
bility will be violated and the flow becomes centrifugally
unstable. In a MRI experiment it is crucial to rule out such
instabilities, and special care concerning the vertical bound-
ary conditions is needed in order to obtain the desired rota-
tional profile.

PROBLEM FORMULATION

We consider two concentric cylinders with radii R;,, Ry
embedded in an external axial magnetic field. They rotate
with angular velocities €y,,Q,,, the radius ratio is %
=R;,/ R,y and the rotation ratio 1=,/ {};,. Cylindrical co-
ordinates (R, ¢,z) with unit vectors €g,€,,€, are used. If the
cylinders are unbounded, i.e., infinitely long or periodic, the
rotational profile is

b
Qo(R)=a+I?, (1
with
A s ) )
a= Qinl _ 7/\72’ b= 1— ﬁzRinQin’ (2)

and up=u,=0 everywhere. The flow is hydrodynamically
stable if the Rayleigh criterion d(R*Q))%/dR>0 is satisfied,
i.e., for 4> 7. Consequently, for the considered radius ratio
n=1/2, the flow is always stable if & >0.25. Here we con-
sider only cases when 4>0.25 so that hydrodynamical in-
stabilities are ruled out.

Let us introduce the Reynolds number Re, which mea-
sures the rotation rates, and the Hartmann number Ha, which
measures the strength of the externally applied magnetic
field By=B€.,

2
D . Re= QmRmD’ 3)
MopV 7] v

Ha:BO

where p is the density, v is the kinematic viscosity, 7 is the
magnetic diffusivity, and u, is the magnetic permeability.
The fluid confined between the cylinders is assumed to be
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incompressible and it can be characterized by the magnetic
Prandtl number Pm=1v/ 7. For laboratory liquid metals, like
gallium, Pm is very small—of order 10760 therefore we
concentrate on effects arising only when Pm is small.

The equations

Using D as the unit of length, v/D as the unit of velocity,
D?/ v as the unit of time, By as the unit of the axial magnetic
field and assuming B=B;+b, we can write non-dimensional
MHD equations for the problem of our interest, i.e.,

H 2
&,u+(u-V)u=—Vp+V2u+P—a[(rot b) X b + (rot b)
m

X By/Byl, (4a)

1
b= P—Vzb + rot(u X b) + rot(u X By/By), (4b)
m

with div u=div b=0, where u and b are the velocity and the
perturbed magnetic field, and p is the pressure.

For the velocity we apply no-slip boundary conditions at
the cylinders and at the end plates as well. We assume that
both the plates rotate rigidly with angular velocity .nq,
which can be set to any value so that the plates can rotate
independently of the cylinders.

Boundary conditions for the magnetic field are deter-
mined by magnetic properties of the cylinders and the plates.
Here we consider only perfectly conducting radial bound-
aries, so that the transverse currents and perpendicular com-
ponent of the magnetic field vanish; hence R‘1b¢+ drb =0 at
R=R;,/D,R=R,/D. We chose such boundaries since in the
PROMISE experiment the cylinders were made of copper.
The reason for choosing copper is that the critical Re and Ha
numbers for the onset of the MRI are smaller by almost a
factor of 2 with perfectly conducting boundaries than with
insulating boundaries [18].

For the end plates, as for the walls, the electric field must
be continuous and b,=0; then by=€d.b, at z=0 and b,=
—e&zbd, at z=I", where € characterizes a thin layer of relative
conductance of the fluid and the plates [19,20]. When €
— 0 we obtain conditions corresponding to insulating end
plates, i.e., b¢=ﬂJ¢=O at z=0,z=T, Jé being the azimuthal
current. For e—, we have the case describing perfectly
conducting plates, d,b4=j4=0 at z=0,z=I". We note that this
thin-wall approximation is valid only when the magnetic
field varies linearly within the plates and it does not neces-
sarily resemble the situation in a real experiment.

The small-Pm limit

For laboratory liquids, the conductivity o is small, so that
the magnetic diffusivity =1/ puy0 is very large (compared to
the viscosity) and the corresponding magnetic Prandtl num-
ber Pm is small. Consequently, the time scale for magnetic
diffusion is much shorter than other time scales. Therefore
we consider the limit 77— %; however it must be supposed
that Ha tends to a finite value. The perturbations b of the
externally applied field induced by the motion of the fluid are
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Pm times smaller than B, although their effect on the Lor-
entz force cannot be neglected since Ha?/Pm[(rotb)
X By/By] is already of order Ha. Nevertheless, the interac-
tions (rot b) X b are vanishingly small.

Similarly, in the induction equation we may apply a quasi-
static approximation, so that the electromagnetic field pro-
ceeds along a sequence of steady-state solutions of the Max-
well equations to conditions described by u, and therefore b
in each moment adjusts instantaneously to the velocity u.
Hence, in the small-Prandtl-number limit Pm — 0, the system
(4a) and (4b) can be written as

du+(u-V)u=-Vp+Viu+Ha’(V Xb) X ByB,,
(52)

with div u=div b=0 [21,22]. Equations (5a) and (5b) to-
gether with the discussed boundary conditions are solved
with the finite-difference method using the stream function—
vorticity formulation in the (R,z) plane. In this work we
assume that the flow is axisymmetric. For more details on the
numerical procedure, see [10,15].

THE EKMAN-HARTMANN LAYER IN MHD TAYLOR-
COUETTE FLOW

At an interface between an incompressible fluid with low
viscosity and a rapidly rotating rigid surface, an Ekman layer
develops with thickness dgovw/(), where ) is the rate of
uniform rotation. Similarly, for a flow of conducting, incom-
pressible fluid in the vicinity of a rigid nonrotating boundary
and under the influence of an external magnetic field perpen-
dicular to the surface, there exists a Hartman layer with
thickness dHOCHa“. When these two effects are combined,
the Ekman-Hartmann layer develops [23]. It can be viewed
either as a modification of the Ekman layer by introducing
the conducting fluid and imposing the external magnetic field
or as a modification of the Hartmann layer by adding the
uniform rotation of the bounding surface. The resulting layer
(in its steady form) assures a proper transition for the veloc-
ity and the magnetic field from the values inside the bulk of
the fluid to the applied boundary conditions.

The linear analysis of the Ekman-Hartmann layer in its
idealized case was presented in [24]. There, Gilman and
Benton considered an infinite, insulating plate rotating with
Qe at z=0, and a conducting fluid filling the space z>0;
the fluid far from the plate rotates with (Qgq=Qpae(1+€'),
€' < 1. The most important conclusion of this work was that,
in addition to the well-known Ekman suction or blowing of
mass flux, there also exists an electric Hartmann current
which has the same direction (or opposite when the external
B. is negative) as the velocity of the Ekman blowing (the fact
that fluid is blown away or sucked toward the boundaries
depends only on the sign of €'). This current, which arises
due to the vertical shears, leaves the Ekman-Hartmann layer
and potentially influences the flow far away from the bound-
ary.

For magnetized Taylor-Couette flow with finite aspect ra-
tio, i.e., if the cylinders are covered with rigidly rotating end
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plates (insulating or conducting), the Ekman-Hartmann layer
also develops. Naturally, the influence of the vertical walls
introduces additional important effects, and direct quantita-
tive comparison with the previous work is not possible. We
must take into account that the fluid which was ejected due
to the Ekman blowing mechanism must eventually get back
due to the conservation of mass and finiteness of the con-
tainer. Nevertheless, we will show that the rotating end plates
induce a Hartmann current, which can change the global
properties of the flow.

Let us introduce the parameter a which measures the
overall importance of the magnetic field,

__dg __Ha
V2dy 2 Re i

a (6)
where dy=DHa™! is the Hartmann depth. For the Ekman
depth, as a measure of the uniform rotation we use (. The
magnetic effects start to be significant when @=1, in the
limit «a— 0 we have the classical Ekman layer, and for «
— the classical Hartmann layer. We notice that, for slow
rotation corresponding to Re of order O(10>~10°) and Ha of
order O(10), @=~1, and therefore we expect the magnetic
fields to be important for many laboratory experiments.

Insulating end plates

First we consider a case when both the cylinders rotate
with the same angular velocity (;,=Q,,=100, i.e., £=1.0,
and the rotational profile (1) is flat. The aspect ratio is I’
=10 and the insulating plates rotate with angular velocity
slightly different from that of the cylinders, .,,=90.

Figure 1 shows how the axial velocity u, and the axial
current j, change with distance z from the plates, for differ-
ent strength of the applied magnetic field. It can be seen that
the axial velocity and the axial current decrease for stronger
magnetic field. The explanation is as follows. The vertical
shears in ug and u, produce currents which together with the
axial field generate body forces acting against the shears.
Since the radial flow must vanish at the boundaries as well as
is vanishing far away from them, the effect is to reduce uy
and, due to mass conservation, u,. Therefore the external
axial magnetic field inhibits the Ekman blowing (which is
completely suppressed when a— o) and makes the boundary
layer thinner. The azimuthal flow Uy, ON the other hand, is
forced to have different values at the boundaries and far
away from them; thus the shear can be decreased only in the
region close to the boundary.

These results are in a good agreement with the linear so-
lution [24] for the case of the infinite, rotating plate and
Pm— 0 (the agreement for other quantities like ug and u,, is
pleasing as well). We notice that in the radially unbounded
case u, and j, are independent of R, which cannot be true for
the enclosed Taylor-Couette system. The values presented in
Fig. 1 are computed for R=R;,+D/2, in the middle of the
gap, so that the influence of the rotating cylinders is as small
as possible.

We point out that the induced axial current j, (the Hart-
mann current) exists outside the boundary layer. This is not
the case for nonrotating Hartmann boundaries. For un-
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FIG. 1. Structure of the Ekman-Hartmann layer for the MHD
Taylor-Couette flow with €Q;;=0Q.,=100, I'=10, insulting end
plates rotating with €.,3=90, and z the distance from one of the
plates. Different values of the magnetic interaction parameters cor-
respond to Ha—0.0 (@—0.0), Ha=3.0 («=0.2), Ha=10.0 («
=0.7), and Ha=30.0 (@=2.1); dg=0.01D is the Ekman layer
thickness.

bounded flow this current quickly converges to an
asymptotic constant value, but for the case of flow between
two plates, or for the enclosed cylinders, it cannot be true,
and the currents induced by both end plates must eventually
interact. When we consider a system symmetric in the z di-
rection, i.e., when the two plates rotate in the same manner,
the induced j, have the same strength but opposite signs, and
they eventually meet, turning in the radial direction (and
consequently j,=0 in the middle of the container for sym-
metric boundary conditions).

We have varied 0=, 4=, for constant Q;,=Q
=100; similarly we considered 0=;,=Q, =100 for Q4
=100 to get the values of the Ekman-Hartmann blowing and
suction when the difference between cylinder and end plate
rotation is large. The agreement with previous nonlinear cal-
culations for the infinite plate is quite good [25]. The depen-
dence of the induced mass flux and the current on the
strength of the magnetic field as well as on the relative fluid—
end plate rotation has the same character.

If the flow is vertically bounded by two plates, as for the
Taylor-Couette system, three essentially different regions can
be distinguished: the Ekman-Hartmann layer, a magnetic dif-

PHYSICAL REVIEW E 76, 066308 (2007)

fusion region, and a current-free region ([26,27]). In the
magnetic diffusion region (MDR) the axial Hartmann current
must be reduced to zero before it reaches the current-free
region and, by continuity, it is turned to the radial direction.
This radial perturbation current interacts with the axial mag-
netic field and results in an accelerating (for negative j and
positive B.) or decelerating (for positive j) electromagnetic
body force.

The MDR arises since the Ekman-Hartmann layer itself is
incapable of forcing the current to satisfy the exterior bound-
ary conditions. It constantly grows in time and it quickly
dominates the whole space between the plates. Moreover,
when considering the small-Pm limit, the MDR instantly be-
comes spatially uniform and infinitely thick even for one
bounding plane, and the current-free region does not exists at
all [27].

Consequently, in our enclosed MHD Taylor-Couette sys-
tem with Pm— 0, we have a relatively thin Ekman-Hartmann
layer close to the plates, whereas the fluid in the major part
of the container forms the MDR in which the axial Hartmann
current changes to a radial one. We underline here that this is
true for perfectly conducting walls, since such radial bound-
ary conditions assure us that the current can penetrate the
cylinders. The situation would be rather different with insu-
lating radial boundaries.

Conducting end plates

For highly conducting plates, the induced current drawn
into or from the plates is much stronger than the current
induced in the layer for insulating boundaries. The Ekman-
Hartmann layer itself is nearly unaffected by conductivity of
the plates, as are the velocities and the currents within this
layer. However, due to the constant magnetic field perturba-
tion there exists an additional electric current of order 2P
which is induced by the conducting boundaries, P
=€V, / v, and € characterizes the relative conductance of
the fluid and the thin plates [19]. Moreover, in the MDR this
current increases the fluid velocity by a factor of 2a°®.

Figure 2 shows how the radial current j in the middle of
the container changes with the conductivity of the end plates.
The difference between the perfect insulator and the perfect
conductor is almost one order of magnitude even for such
slow rotation. We find that for an MRI experiment it is cru-
cial to use insulating plates in order to minimize this unde-
sirable current.

THE INFLUENCE OF THE HARTMANN CURRENT

We notice that the force due to the radial current and the
axial magnetic field, Ha?jéz X By/Bj, enters the momentum
equation (5a) for the u, component. Formally, the force is
equivalent to applying an azimuthal pressure gradient d,p
#0. A flow between rotating cylinders with nonzero d,p is
usually referred to as Taylor-Dean flow [28]. Its rotational
profile Qp is a superposition of the circular Couette profile
(1) and the steady flow

Qp=Qg+e(c+dR*+InR), (7)

with
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FIG. 2. Radial current ji (R=Ry,/D+1/2,z=1"/2) in the
middle of the gap for MHD Taylor-Couette flow with Ha
=10, Quu=0;,=200, Q.,q=202, I'=10. The upper line repre-
sents insulating plates, the bottom line perfectly conducting ones,
and in between is the intermediate case for different values of the
relative conductance.
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The pressure gradient can be realized by an external pump-
ing mechanism or, as in the case discussed, by the Lorentz
force resulting from the induced current and the axial mag-
netic field.

Let us introduce a parameter B describing Taylor-Dean
flows, the ratio of the average pumping velocity to the rota-
tion velocity,

B= ,
QinRin

where V,, is the average pumping velocity,

l Roul
Vy=— f [e(c +d/R*+1n R)]dR
DJx

mn

_ . Ry (1-7)*-47(n 7)°
Topv 4(1-)(1- )

(12)

[29]. The basic question arises whether the resulting pump-
ing due to the radial current and the axial field can bring the
flow into an unstable regime.

Hartmann current generated by the end plates

The structure of the Ekman-Hartmann layer changes with
parameters such as rotation rate or strength of the magnetic
field. Here, however, we will concentrate on the flow in the
bulk of the container so that only currents and velocities
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FIG. 3. Contour lines of stream function for different flow pa-
rameters: the left edge of each panel denotes the inner cylinder, the
right edge the outer one, and solid lines correspond to clockwise
fluid rotation. The end plates are attached to the outer cylinder,
Qena=Qou> £=0.27,I'=10. Cases a and b are for conducting plates
and Ha=3, c and d for insulating ones and Ha=10.

which leave the layer are important. We analyze hydrody-
namically stable flow with 4=0.27 at the aspect ratio I'
=10 with rigidly rotating end plates.

End plates rotating with €, and Q;,

First we consider cylinders covered with rigid, perfectly
conducting plates rotating with angular velocity equal to that
of the outer cylinder, Q4= We choose conducting lids
so that the induced current is much stronger and its influence
on the flow is more evident.

When the plates rotate with Q4= the Ekman circu-
lation is clockwise and the corresponding Hartman current
has the positive sign, i.e., close to the inner cylinder it leaves
the Ekman-Hartmann layer with j, > 0; consequently the ra-
dial current also has positive sign. Figure 3, cases a and b,
displays a flow with conducting plates and a weak axial mag-
netic field applied, Ha=3, for two different Reynolds num-
bers. The rotation ratio is £=0.27, so that the Couette flow is
hydrodynamically stable; however we notice that when Re is
large enough the flow changes significantly and Taylor vor-
tices can be observed.

This phenomenon can be explained as follows: For a con-
stant Ha, increase of the rotation rate leads to a stronger
Hartmann current drawn into the flow; therefore the corre-
sponding pumping B due to jz€z X B, increases and for a
certain Re it reaches a critical value f,, so that the instability
develops.
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FIG. 4. As in Fig. 3, but end plates are attached to the inner
cylinder, Q.q=;,. Cases e and f are for conducting plates and
Ha=3, g and h for insulating ones and Ha=10. Note that for the
insulating end plates Re is an order of magnitude larger.

If the perfectly conducting ends are replaced with insulat-
ing ones, the induced current is much weaker. When the
imposed magnetic field has strength such that Ha=3, the
pumping is too small to make the flow unstable, regardless of
the Reynolds number. However, when the magnetic field is
stronger, Ha=10, for sufficiently high rotation rates the vor-
tices can also be seen, Fig. 3, cases ¢ and d.

It is known that a stronger axial magnetic field has a sta-
bilizing effect even on a hydrodynamically unstable flow
(e.g., [30]). Besides that, the Hartmann current increases
with the amplitude of the magnetic field only until a certain
point is reached. When the magnetic interaction parameter
becomes a=2.5, increasing Ha does not further increase the
Hartmann current [24]. For these reasons it is clear that,
when the imposed magnetic field is strong enough, the insta-
bility described above will not occur. Indeed, it has been
checked that for conducting plates, Re=200, and a magnetic
field with Ha=20, there are no Taylor vortices, although the
rotational profile is significantly changed when compared to
the nonmagnetic situation.

If rigidly conducting end plates are attached to the inner
cylinder, so that Q.,4={);,, the Ekman circulation is counter-
clockwise (Ekman suction) and the corresponding Hartmann
current has a negative sign, so that the parameter (3 is posi-
tive. From Fig. 4, cases e and f, we see that, analogously to
the cases ¢ and d, if the rotation is sufficiently fast the result-
ing (B reaches a critical value and the flow becomes domi-
nated by the vortices.

Similarly when insulating plates are used, the axial mag-
netic field with Ha=3 is too weak to generate sufficiently
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FIG. 5. {(R,z=T"/2) calculated for MHD Taylor-Couette flow
with conducting end plates attached to the outer cylinder (case b,
Re=200) and the inner one (case f, Re=150). The Rayleigh crite-
rion yields >0 for stability.

large 8. When a stronger field is applied, Ha=10, it is pos-
sible to observe the instability (cases g and h).

The rotational profile

As mentioned above, if the induced radial current has the
same sign as the axial magnetic field, the azimuthal velocity
of the fluid is decelerated; if the signs are opposite the flow is
accelerated. The discussed instability is a centrifugal one and
is simply due to change in the rotational profile of the fluid.
Let us use a Rayleigh discriminant for stability,
=dr(R?Q)/(RQ); the flow is stable if {>0. Figure 5 shows
the radial dependence of ¢ in the middle of the gap (z
=I"/2) for the two cases labeled as b and f.

We notice that the vortices concentrate in the region
where { is negative, i.e., where the Rayleigh criterion is not
satisfied. This instability has essentially local character, so it
is not possible to define any specific critical Reynolds num-
ber whose crossing would lead to some exponential grow in
the whole container. For conducting plates and Q.,4=Qqu
there exists Re between 100 (case a) and 200 (case b) for
which only a part of the container would be filled with the
vortices.

Linear stability of current-induced MHD Taylor-Dean flow

In order to predict the onset of the instability discussed
above, we analyze the global stability of MHD Taylor-Dean
flow for our parameters. For the nonlinear simulations we
can estimate the pumping due to the azimuthal pressure gra-
dient just by setting (Vp),, to Ha?j see [Eq. (5a)]. Generally
(Vp) 4 and jg change with radius as R™'. However, due to the
presence of the plates, for jp this is true only far from the
vertical boundaries and here the value of jp is taken at R
=R;,/D, z=I'/2 (note that for our perfectly conducting
boundaries the current penetrates the cylinders and for a
steady state it is largest at R=R;,/D). In this way we obtain
the parameter 8 associated with the enclosed MHD Taylor-
Couette flow for the given boundary conditions a-h, and then
it can be compared with the critical value 3. obtained from
the linear stability analysis.
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Consider now the axisymmetric MHD Taylor-Dean flow
for infinitely long cylinders governed by Egs. (4a) and (4b).
It admits the basic solution uz=RQp with ug=u,=bg=b,
=0 and the imposed axial magnetic field B,. The perturbed
state is ul'e,RQD+u;5,uZ",b,’e,b(",,,BO+bZ.

After developing disturbances into normal modes we seek
solutions of the linearized MHD equations in a form similar
to that in [30,31]. An appropriate set of ten boundary condi-
tions is needed in order to solve the system; these are the
no-slip boundary conditions for the velocity ug=uy=u’=0
and perfectly conducting conditions for the magnetic field
Irby+by/R=bp=0 at both cylinders. We will consider only
stationary marginally stable modes.

The homogeneous set of equations together with the
boundary conditions for the walls determine an eigenvalue
problem of the form L(4,#,k,m,Pm,Re,Ha,B)=0. The
variables are approximated with the finite-difference method
on a grid typically with 200 points. The numerical code used
to solve the problem is identical to that used in [30].

For the current axisymmetric study (see, however, [34]),
we set parameters m=0, #=0.5, 2=0.27, Pm=107%; then
for given Ha and Re we look for minimal value of || lead-
ing to the instability (the value for which the determinant L is
zero). Since B is directly proportional to the azimuthal pres-
sure gradient, and therefore to the radial current, the resulting
critical B, determines the minimum value of the radial cur-
rent for which the Taylor-Dean flow becomes unstable.

Figure 6 shows marginal stability lines for the MHD
Taylor-Dean flow for different values of the imposed axial
magnetic field, for both positive and negative values of B.
We notice that much larger values of || are needed for stron-
ger axial magnetic fields since the field plays a stabilizing
role.

The labels A-H refer to the MHD Taylor-Coutte flows
presented in the previous section, e.g., a refers to the flow
with Re=100, Ha=3, 4=0.27 with perfectly conducting
end plates attached to the outer cylinder. The induced current
Jr 1s such that the corresponding S due to the Lorentz force
denotes a stable flow. If the Reynolds number is increased,
the critical value B, (for Ha=3) is reached and an instability
develops—Ilabel b.

SUMMARY

Gilman and Benton [24] have shown with a linear theory
that, in the vicinity of a rotating plane which serves as a
border for a rotating conducing fluid, the Ekman-Hartmann
layer develops if {1, # (g and an axial magnetic field is
applied. The most important feature of Ekman-Hartmann
layers is their ability to induce both mass fluxes and electric
currents in the region outside the boundary layer. If (),
< Qyiq these fluxes are directed out of the layer (blowing);
when Q> Qgyiq they are toward the layer (suction). For
the conducting plates the fluxes are much stronger since ad-
ditional currents are drawn from or into the plates.

Outside the Ekman-Hartmann layer is the magnetic diffu-
sion region, in which the electric current has only radial
components. The current, together with the axial magnetic
field, produces an electromagnetic body force acting on the
fluid.
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FIG. 6. Critical values of the pumping to rotation ratio 83, for
MHD Taylor-Dean flow with £=0.27, for different Reynolds num-
bers Re and strength of the magnetic field Ha. The case for negative
(positive) B corresponds to the azimuthal pressure gradient due to
positive (negative) radial currents interacting with the axial field.
On the left panel the unstable region lies below the line, on the right
one above the lines. The letters a—h represent states displayed in
Figs. 3 and 4.

We have shown in this paper that similar effects arise for
the MHD Taylor-Couette flow when the rotating cylinders
are bounded by two rigidly rotating end plates. Near the
plates, the Ekman-Hartmann layer forms and, consequently,
there exists a Hartmann current which penetrates the bulk of
the fluid. In the presence of an axial magnetic field, this
problem can be compared with the Taylor-Dean flow—a
flow between (possibly rotating) cylinders which is addition-
ally driven by an azimuthal pressure gradient.

We find that under certain conditions the resulting flow
becomes unstable, Taylor vortices can be observed, and the
rotational profile is significantly different from the standard
Couette solution (). The instability has essentially a cen-
trifugal character as the Rayleigh criterion is locally violated.
This is an undesirable effect from the point of view of a MRI
experiment. In such an experiment it is necessary to obtain a
state resembling (), in the major part of the container, for
parameters characterizing stable MHD flows. It is necessary
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to take into account the magnetic effects induced by the
plates so that the MRI can be clearly identified rather than
any other instability.

The fluxes induced in the Ekman-Hartmann layer are a
direct consequence of a shear close to the boundaries. Exem-
plary methods of reducing the shear have been proposed in
[16]. For rotation rates characterized by Re of order O(10°)

PHYSICAL REVIEW E 76, 066308 (2007)

all the effects can be significantly reduced by allowing the
end plates to rotate independently of the cylinders [32].
Since for Q.,q={, there is the Ekman suction and for
Qa=Qgy the Ekman blowing, there exists Qg <Qenq
< (), for which the generated mass and charge fluxes are
minimal. Alternatively, one can divide the plates into inde-
pendently rotating rings [33].
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